
BOLT: A Lightweight OpenMP Library

for Massive Fine -Grained Parallelism

Pavan Balaji

Argonne National Laboratory

Email: balaji@anl.gov

ShintaroIwasaki

Argonne National Laboratory

Email: siwasaki@anl.gov

Presenter

mailto:balaji@anl.gov
mailto:siwasaki@anl.gov

Exploiting Parallelism for Efficient Computing

ÁHighly parallel compute resources

ÁComplex workloads across several software stacks

ÁHowaboutOpenMP?

2

CPU CPU

CPU CPU

CPU CPU

CPU CPU

In-situ

Power capping

More
Complex

[Right] Intel Xeon Phi (Knights Landing) 72 cores, 288 HWTs
(https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing)

[Left] ARM ThunderX2 up to 32 cores, 128 HWTs
(https://www.servethehome.com/cavium-thunderx2-review-benchmarks-real-arm-server-option/)

1.0E-1

1.0E+1

1.0E+3

1.0E+5

1968 1982 1995 2009 2023C
P

U
 F

re
q

u
e
n

c
y

[M
H

z
]

Year

1

10

100

1968 1982 1995 2009 2023

#
 o

f
C

o
re

s
p

e
r

P
ro

ce
ss

o
r

Year

Frequency

of CPU cores

CPU DB: (http://cpudb.stanford.edu/)

Biology

(heart murmur simulation)

Chemistry

(molecular dynamics)

Graph Analytics

Efficient Thread/Task Management for OpenMP + X?

ÁOpenMP + OpenMP

ςNested parallel regions

ςCreation of OpenMP threads at

each level of parallel regions

can exponentially increase the

total number of threads.

3

ÁhǇŜƴat Ҍ ƻǘƘŜǊ ǇŀǊŀƭƭŜƭ ǊǳƴǘƛƳŜ ǎȅǎǘŜƳǎ Χ

High-Level
Runtime System

OpenMP Runtime System

Scientific Library

Math Library A

User Applications

Math Library B

OpenMP-parallelized code

OpenMP-parallelized code

OpenMP-parallelized code OpenMP-parallelized code

nested!

ÁOpenMP + MPI

ςPoor performance of

multithreaded MPI because of

heavy lock contention.

ςMPI + OpenMP tasks?

Applications

OpenMP MPI

BOLT: OpenMP over Argobots [*]

ÁUse lightweight Argobots threads for OpenMP threads and tasks

4

Core Core

BOLT

Argobots

OpenMP-Parallelized Program

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

ULT ULT ULT ULT

Pthreads Pthreads
Execution Stream Execution Stream

Core Core

Intel
OpenMP

OpenMP-Parallelized Program

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

Pthreads PthreadsPthreads Pthreads

BOLT: LLVM OpenMP over ArgobotsTraditional OpenMP (Intel OpenMP)

1E-5

1E-4

1E-3

1E-2

1E-1

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

Outer loop count (L)
BOLT GCC OpenMP

Intel OpenMP LLVM OpenMP

(Ideal)

0

500

1000

1500

2000

2500

1 10 100

G
F

L
O

P
S

of Inner Threads

BOLT

Intel OpenMP (IOMP)

IOMP (nesting disabled)

ECP SLATE: Cholesky factorization ()

[*] ECP SLATE: https://icl.utk.edu/slate/

BLAS

SLATE Library

OpenMP parallelized code

Application Using ECP SLATE

OpenMP Runtime System

OpenMP task-parallelized
codetask task task task

// Run on a 56 - core Skylake server
#pragma omp parallel for num_threads (56)
for (int i = 0; i < L; i ++)

#pragma omp taskloop grainsize(1)
for (int j = 0; j < 28; j++)

comp_20000_cycles(i , j);

Performance of Nested Parallel Regions

Lightweight OpenMP threads outperform taskloop! BOLT can exploit nested parallel regions.

ώϝϐ {Φ Lǿŀǎŀƪƛ Ŝǘ ŀƭΦ ά.h[¢Υ hǇǘƛƳƛȊƛƴƎ hǇŜƴat tŀǊŀƭƭŜƭ wŜƎƛƻƴǎ ǿƛǘƘ ¦ǎŜǊ-[ŜǾŜƭ ¢ƘǊŜŀŘǎϦΣ t!/¢ ΨмфΣ 2019 (BEST PAPER)

Design of BOLT

Argobots: A Low -Level Lightweight Threading Library

ÁArgobots is an open-source project

ςURL: https://argobots.org/

ςMaintained by Argonne National Laboratory

ωCollaborators: UIUC, Univ. of Tennessee, PNNL,

Intel, UTokyoΣ wƛƪŜƴΣ Χ

ωSupported by DOE

ÁUnleashes user-level threads (ULTs)

ÁProvides for the future scalable systems.

ς9ȄǘǊŜƳŜƭȅ ƭƛƎƘǘǿŜƛƎƘǘ άǘƘǊŜŀŘέ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ

ςRich and powerful threading capabilities

ςLow-level customizability

6

Argobots
CPU

Core Core Core

OS-level thread OS-level thread OS-level thread

Pool Pool Pool

Execution
Stream

Execution
Stream

Execution
Stream

Scheduler Scheduler Scheduler

ULT ULT ULT

ULT ULT

Pool
ULT ULT

https://argobots.org/

What is a User -Level Thread (ULT)?

ÁA user-level thread (ULT) implements all threading operations

in user space.

ÁAdvantages of ULTs:

1. Lightweight thread with low

context-switching overhead

2. Multiple ULTs can be mapped to

a single OS-level thread

3. Users can control scheduling
7

Kernel (OS)

P
th

re
a

d
s

P
th

re
a

d
s

P
th

re
a

d
s

P
th

re
a

d
s

P
th

re
a

d
s

P
th

re
a

d
s

P
th

re
a

d
s

P
th

re
a

d
s

Core

Kernel (OS)

Core

Pthreads Pthreads

Core Core

Execution Stream Execution Stream

U
L

T

U
L

T

U
L

T

U
L

T

U
L

T

U
L

T

U
L

T

U
L

T

Naïve Pthreads Argobots

Heavy!

Thread scheduling (= context
switching) involve heavy system
calls.

User-level threads (ULTs) are
running on Pthreads; scheduling
is done by user-level context
switchingin user space.

Small overheads.

> 350x

Fork-Join Performance on KNL

BOLT: BOLT is OpenMP over Lightweight Threads

ÁBOLT: an OpenMP library over Argobots

ςBased on LLVM OpenMP 10.0

ςProvides most of the latest OpenMP features.

ςMaps both OpenMP threads and tasks to Argobots ULTs.

ωTiny threading overheads.

ςHigh ABI compatibility with LLVM/Intel/GNU OpenMP

8

Core Core

BOLT

Argobots

OpenMP-Parallelized Program

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

ULT ULT ULT ULT

Pthreads Pthreads
Execution Stream Execution Stream

Core Core

Intel
OpenMP

OpenMP-Parallelized Program

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

Pthreads PthreadsPthreads Pthreads

BOLTTraditional OpenMP (Intel OpenMP)

How does BOLT work?

ÁParallel region (e.g., #omp parallel for)

creates OpenMP threads over ULTs.

ÁWork stealing can distribute work.

ςOpenMP task works similarly, but

this talk omits the details.

9

#pragma omp parallel for \
num_threads (4)

for (i = 0; i < 4; i ++)
kernel(data[i], i);

Core Core

OpenMP-Parallelized Program

Execution Stream Execution Stream
Pthreads Pthreads

BOLT

Pool

OpenMP
Thread

ULT

OpenMP
Thread

ULT

OpenMP
Thread

ULT

OpenMP
Thread

ULT

Finish all threads!

Pool

Lightweight Threads for OpenMP+OpenMP

ÁOpenMP parallelizes multiple software stacks.

ÁNested parallel regions create OpenMP threads exponentially.

11

Lightweight Threads for OpenMP + OpenMP

High-Level
Runtime System

OpenMP Runtime System

Scientific Library

Math Library A

User Applications

Math Library B

OpenMP-parallelized code

OpenMP-parallelized code

OpenMP-parallelized code OpenMP-parallelized code

nested!

Code Example

#pragma omp parallel for
for (i = 0; i < n; i ++)

dgemv(matrix[n], ...);

// BLAS library
void dgemv(...) {

#pragma omp parallel for
for (i = 0; i < n; i ++)

dgemv_seq(data[n], i);
}

nested!

#pragma omp parallel for
for (i = 0; i < n; i ++)

dgemm(matrix[n], ...);

void dgemm(...):
#pragma omp parallel for
for (i = 0; i < n; i ++);

Thread

Core Core Core Core

Parallel Region

Thread Thread Thread Thread

Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread

Parallel Region Parallel Region Parallel Region Parallel Region

ÁCase of oversubscriptions: nested parallel regions

Can We Just Disable Nested Parallelism?

ÁHow to utilize nested parallel regions?

ςEnable nested parallelism: creation of exponential the number of threads

ςDisable nested parallelism: adversely decrease parallelism

12

#pragma omp parallel for
for (i = 0; i < n; i ++)

comp(cells[i], ...);

void comp(...):
[...];
#pragma omp parallel for
for (i = 0; i < n; i ++);

Node

Core Core Node Node

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Node Node

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Core Core

Core Core

Core Core

Core Core

Node

Multicore Manycore
Manycore + Many nodes

ÁExample: strong scaling on massively parallel machines

Cells Cells Cells

Is the outer parallelism enough to feed work to all the cores???

Two Directions to Address Nested Parallelism

ÁNested parallel regions have been known as a problem since

OpenMP 1.0 (1997).

ςBy default, OpenMP disables nested parallelism[*].

Á Investigated two directions to address it:

1. Use several workarounds implied in

the OpenMP specification.

=> Inefficient/unfeasible if users do not know

parallelismin other software stacks.

2. Instead of OS-level threads, use lightweight threads as OpenMP threads

=> It does not perform well if parallel regions are not nested(i.e., flat).

ωIt does not perform well even when parallel regions are nested.

=> Need a solution to efficiently utilize nested parallelism.

13

ώϝϐ {ƛƴŎŜ hǇŜƴat рΦлΣ ǘƘŜ ŘŜŦŀǳƭǘ ōŜŎƻƳŜǎ άƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŘŜŦƛƴŜŘέΣ ǿƘƛƭŜ Ƴƻǎǘ hǇŜƴat ǎȅǎǘŜƳǎ ŎƻƴǘƛƴǳŜ ǘƻ ŘƛǎŀōƭŜ ƴŜǎǘŜŘ ǇŀǊallelism by default.

Using ULTs in LLVM OpenMP is Easy

ÁReplacing a Pthreads layer with that of Argobots is easy

Á5ƻŜǎ ǘƘŜ άōŀǎŜƭƛƴŜ .h[¢έ ǇŜǊŦƻǊƳ ǿŜƭƭΚ

14

Core Core

LLVM
OpenMP
over ULT

ULT layer
(Argobots)

OpenMP-Parallelized Program

OpenMP
Thread

ULT

OpenMP
Thread

ULT

OpenMP
Thread

ULT

OpenMP
Thread

ULT

Scheduler Scheduler
Pthreads Pthreads

Core Core

LLVM
OpenMP

OpenMP-Parallelized Program

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

OpenMP
Thread

Pthreads PthreadsPthreads Pthreads

LLVM OpenMP 7.0 over ULT (= BOLT baseline)LLVM OpenMP 7.0

ULT-based OpenMP is not New.

ÁUse ULTs to avoid oversubscriptions of OS-level threads.

ÁSeveral ULT-based OpenMP systems have been proposed.

ςNanosCompiler[1], Omni/ST [2], OMPi[3], MPC [4], ForestGOMP[5],

OmpSs(OpenMP compatible mode) [6], LibKOMPώтϐ Χ

15

ÁHowever, these runtimes do not perform well for

several reasons.

ςLack of OpenMP specification-aware optimizations

ςLack of general optimizations

[1] Marc et al., NanosCompiler: Supporting Flexible Multilevel Parallelism Exploitation in OpenMP. 2000
[2] Tanaka et al., Performance Evaluation of OpenMP Applications with Nested Parallelism. 2000
[3] Hadjidoukaset al., Support and Efficiency of Nested Parallelism in OpenMP Implementations. 2008
[4] Péracheet al., MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. 2008
[5] Broquediset al., ForestGOMP: An Efficient OpenMP Environment for NUMA Architectures. 2010
[6] Duran et al., A Proposal for Programming Heterogeneous Multi-Core Architectures. 2011
[7] Broquediset al., libKOMP, an Efficient OpenMP Runtime System for Both Fork-Join and Data Flow Paradigms. 2012

For apples-to-apples comparison, we will
focus on the ULT-based LLVM OpenMP.

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

of outer threads (N)

1E-61E+0

1 10 100
E

xe
cu

ti
o

n

ti
m

e
 [
s]

of outer threads (N)BOLT (baseline) GCC MPC

OMPi Mercurium Intel

LLVM Ideal

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

of outer threads (N)

1E-61E+0

1 10 100
E

xe
cu

ti
o

n

ti
m

e
 [
s]

of outer threads (N)BOLT (baseline) GCC MPC

OMPi Mercurium Intel

LLVM Ideal

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

of outer threads (N)

1E-61E+0

1 10 100
E

xe
cu

ti
o

n

ti
m

e
 [
s]

of outer threads (N)BOLT (baseline) GCC MPC

OMPi Mercurium Intel

LLVM Ideal

Simple Replacement Performs Poorly

16

// Run on a 56 - core Skylake server
#pragma omp parallel for num_threads (N)
for (int i = 0; i < N; i ++)

#pragma omp parallel for num_threads (28)
for (int j = 0; j < 28; j++)

comp_20000_cycles(i , j);

GCC: GNU OpenMP with GCC 8.1
Intel: Intel OpenMP with ICC 17.2.174
LLVM: LLVM OpenMP with LLVM/Clang 7.0
MPC: MPC 3.3.0
OMPi: OMPi1.2.3 and psthreads1.0.4
Mercurium: OmpSs(OpenMP 3.1 compat) 2.1.0 + Nanos++ 0.14.1

ςFaster than GNU OpenMP.

ωGCC

ςSo-soamong ULT-based OpenMPs

ωMPC, OMPi, Mercurium

ςSlowerthan Intel/LLVM OpenMPs.

ωIntel, LLVM

Popular Pthreads-based OpenMP

State-of-the-art ULT-based OpenMP

Nested Parallel Region (balanced)

Lower is better

Solve Scalability Bottlenecks (1/2)

ÁResource management optimizations

1. Divides a large critical sectionprotecting all threading resources.

ωThis cost is negligible with Pthreads.

2. Enable multi-level caching of parallel regions

ω/ŀƭƭŜŘ άƴŜǎǘŜŘ Ƙƻǘ ǘŜŀƳǎέ ƛƴ [[±a hǇŜƴatΦ

17

Thread desc. pool

Team desc. pool

Thread ID counter

Thread desc. pool

Team desc. pool

Thread ID counter

Thread Thread Thread Thread

ThreadThreadThreadThread ThreadThreadThreadThread ThreadThreadThreadThread ThreadThreadThreadThread

Thread

Parallel Region

Parallel Region Parallel Region Parallel Region Parallel Region

Team cache Team cache Team cache Team cache

Solve Scalability Bottlenecks (2/2)

ÁThread creation optimizations

3. Binary creation of OpenMP threads.

18

Primary
(Thread 0)

Thread 3

Primary
(Thread 0)

Thread 2

Thread 3Thread 1Thread 2

Thread 1

Binary Thread CreationSerial Thread Creation (default LLVM OpenMP)

The critical path gets shorter.

1E-5

1E-4

1E-3

1E-2

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

of outer threads (L)

BOLT (baseline)
+ Efficient resource management
++ Scalable thread startup// Run on a 56 - core Skylake server

#pragma omp parallel for num_threads (L)
for (int i = 0; i < L; i ++)

#pragma omp parallel for num_threads (56)
for (int j = 0; j < 56; j++)

no_comp();

No computation to measure the pure overheads.

Nested Parallel Regions (no computation)

Affinity : How to Implement Affinity for ULTs

ÁOpenMP 4.0 introduced place and prod_bindfor affinity.

ςOS-level thread-based libraries (e.g., GNU OpenMP) use CPU masks.

ÁBOLT (baseline) ignored affinity (still standard compliant).

ÁHowever, affinity should be useful to

1. improve locality and 2. reduce pool contentions.

ςNote: ULT runtimes use shared pools + random work stealing.

ÁHow to implement place over ULTs?

19

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Place 0 Place 1 Place 2 Place 3

OpenMP Thread 0 OpenMP Thread 1 OpenMP Thread 2 OpenMP Thread 3

With proc_bind , threads are bound to places.

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads (4)
for (i = 0; i < 4; i ++)

comp(i);

Scheduler 0 Scheduler 1

Pthreads Pthreads

Scheduler 2 Scheduler 3

Pthreads Pthreads

Scheduler 4 Scheduler 5

Pthreads Pthreads

Scheduler 6 Scheduler 7

Pthreads Pthreads

Shared pool Shared pool Shared pool Shared pool Shared pool Shared pool Shared pool Shared pool

Implementation: Place Pool

ÁPlace pools can implement

OpenMP affinity in BOLT.

20

Core 0 Core 1

Place pool

Core 2 Core 3

Place pool

OpenMP
Thread

ULT

OpenMP
Thread

ULT

OpenMP
Thread

ULT

Core 4 Core 5

Place pool

Core 6 Core 7

Place pool

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Place 0 Place 1 Place 2 Place 3

ÁProblem: OpenMP affinity setting is too deterministic.

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads (4)
for (i = 0; i < 4; i ++)

comp(i);

Scheduler 0 Scheduler 1

Pthreads Pthreads

Shared pool Shared pool

Place pool

Scheduler 2 Scheduler 3

Pthreads Pthreads

Shared pool Shared pool

Place pool

Scheduler 4 Scheduler 5

Pthreads Pthreads

Shared pool Shared pool

Place pool

Scheduler 6 Scheduler 7

Pthreads Pthreads

Shared pool Shared pool

Place pool

OpenMP Affinity is Too Deterministic

ÁAffinity (or bind-var) is once set, all

the OpenMP threads created

in the descendant parallel

regionsare bound to places.

21

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads (8)
for (int i = 0; i < 8; i ++)

#pragma omp parallel for num_threads (8)
for (int j = 0; j < 8; j++)

comp(i , j);

i=0

Place 0 Place 1 Place 2 Place 3

i=1 i=2 i=3 i=4 i=5 i=6 i=7

ÁPromising direction: scheduling innermost threads with

unbound random work stealing.

The OpenMP specification writes so.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

i=0,j=1
i=0,j=2
i=0,j=3
i=0,j=4
i=0,j=5
i=0,j=6

i=0,j=7

Limited load balancing.

Scheduler 0 Scheduler 1

Pthreads Pthreads

Shared pool Shared pool

Place pool

Scheduler 2 Scheduler 3

Pthreads Pthreads

Shared pool Shared pool

Place pool

Scheduler 4 Scheduler 5

Pthreads Pthreads

Shared pool Shared pool

Place pool

Scheduler 6 Scheduler 7

Pthreads Pthreads

Shared pool Shared pool

Place pool

Proposed New PROC_BIND: òunsetó

ÁThis scheduling flexibility

gives higher performance.
22

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread ,unset
#pragma omp parallel for num_threads (8)
for (int i = 0; i < 8; i ++)

#pragma omp parallel for num_threads (8)
for (int j = 0; j < 8; j++)

comp(i , j);

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads (8)
for (int i = 0; i < 8; i ++)

#pragma omp parallel for num_threads (8)
for (int j = 0; j < 8; j++)

comp(i , j);

i=0

Place 0 Place 1 Place 2 Place 3

i=1 i=2 i=3 i=4 i=5 i=6 i=7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

i=0,j=1
i=0,j=2
i=0,j=3
i=0,j=4
i=0,j=5
i=0,j=6

i=0,j=7

They can be scheduled on any cores.

Random work stealing for
innermost threads.

1E-5

1E-4

1E-3

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

of outer threads (N)

BOLT (baseline)
+ Efficient resource management
++ Scalable thread startup
+++ Bind=spread
++++ Bind=spread,unset

: reset the affinity setting of the specified parallel region.
(Detailed: The thread affinity policy resets the bind-var ICV and the place-partition-var ICV to their implementation defined values and instructs the execution environment to follow these values.)

Microbenchmarks:

Doubly Nested Loops

23

// Run on a 56 - core Skylake server
#pragma omp parallel for num_threads (L)
for (int i = 0; i < L; i ++) {

#pragma omp parallel for num_thLreads (28)
for (int j = 0; j < 28; j++)

comp_20000_cycles(i , j);
}

// Run on a 56 - core Skylake server
#pragma omp parallel for num_threads (56)
for (int i = 0; i < 56; i ++) {

int work_cycles = get_work (i , alpha);
#pragma omp parallel for num_threads (56)
for (int j = 0; j < 56; j++)

comp_cycles (i , j, work_cycles);}

alpha makes the computation size random,
while keeping the
total problem size.

Large alpha

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

of outer threads (L)

BOLT (baseline) BOLT (opt) GCC

Intel LLVM MPC

OMPi Mercurium Ideal

1E-4

1E-3

1E-2

1E-1

1E+0

0.1 1 10

E
xe

cu
ti
o

n
 t
im

e
 [
s]

Alpha (A)

BOLT (baseline) BOLT (opt) GCC

Intel LLVM MPC

OMPi Mercurium Ideal

(Ideal): theoretical lower bound under perfect scalability.

Lower is better

OpenMP Threads vs. OpenMP Tasks

24

// Run on a 56 - core Skylake server
#pragma omp parallel for num_threads (56)
for (int i = 0; i < L; i ++) {

#pragma omp taskloop grainsize(1)
for (int j = 0; j < 28; j++)

comp_20000_cycles(i , j);
}

1E-5

1E-4

1E-3

1E-2

1 10 100

E
xe

cu
ti
o

n
 t
im

e
 [
s]

Outer loop count (L)

BOLT (baseline) BOLT (opt)

GCC (taskloop) Intel (taskloop)

LLVM (taskloop) Ideal

1E-4

1E-3

1E-2

1E-1

0.1 1 10

E
xe

cu
ti
o

n
 t
im

e
 [
s]

Alpha (A)

BOLT (baseline) BOLT (opt)

GCC (taskloop) Intel (taskloop)

LLVM (taskloop) Ideal

ςParallel regions of BOLT are as fast as taskloop !

// Run on a 56 - core Skylake server
#pragma omp parallel for num_threads (56)
for (int i = 0; i < 56; i ++) {

int work_cycles = get_work (i , alpha);
#pragma omp parallel for num_threads (56)
for (int j = 0; j < 56; j++)

comp_cycles (i , j, work_cycles);}

Lower is betterLower is better

Evaluation of BOLT with Two Applications

Á# of threads for outer loops is usually set to # of cores.

ς i.e., if not nested, oversubscription does not happen.

ÁHowever, many layers are OpenMP parallelized, which can

unintentionally result in nesting.

ÁTwo showcases:

25

FFTW3BLAS

KIFMM

OpenMP parallelized code

OpenMP
parallelized code

OpenMP
parallelized code

OpenMP Runtime System

FFTW3

OpenMP parallelized code

OpenMP
parallelized code

OpenMP Runtime System

LAPACK/ScaLAPACK

BLAS
OpenMP parallelized code

MPI

Qbox

2. Qbox1. KIFMM

Evaluation: KIFMM

ÁKIFMM[*] : highly optimized N-body solver

ςN-body solver is one of the heaviest kernels

in astronomy simulations.

ÁMultiple layers are parallelized by OpenMP.

ςBLAS and FFT.

ÁWe focus on the upward phase

in KIFMM.

26

FFTW3BLAS

KIFMM

OpenMP parallelized code

OpenMP
parallelized code

OpenMP
parallelized code

OpenMP Runtime System

[*] A. Chandramowlishwaranet al., "Brief Announcement: Towards a Communication Optimal Fast Multipole Method and Its Implications at Exascale", SPAA '12, 2012

for (int i = 0; i < max_levels ; i ++)
#pragma omp parallel for
for (int j = 0; j < nodecounts [i]; j++) {

[...];
dgemv(...); // dgemv() creates a parallel region.

}

Performance: KIFMM

ÁExperiments on Skylake 56 cores.

ς# of threads for the outer parallel region = 56

ς# of threads for the inner parallel region = N (changed)

ÁTwo important results:

ςN=1 (flat): performance is almost the same.

ςN>1 (nested): BOLT further boosts performance.
27

void kifmm_upward():
for (int i = 0; i < max_levels ; i ++)

#pragma omp parallel for num_threads (56)
for (int j = 0; j < nodecounts [i]; j++) {

[...];
dgemv(...); // creates a parallel region.

}

void dgemv(...): // in MKL
#pragma omp parallel for num_threads (N)
for (int i = 0; i < [...]; i ++)

dgemv_sequential (...);

0

0.5

1

1.5

2

2.5

1 10 100

R
e

la
tiv

e
 p

e
rf

o
rm

a
n
ce

(B
O

L
T

/1
th

re
a

d
 =

 1
)

of inner threads (N)

NP=12, # pts = 100,000

05 BOLT (opt) Intel (nobind) Intel (true)

Intel (close) Intel (spread) Intel (dyn)

Different Intel OpenMP configurations:
nobind(=false),true,close,spread: proc_bind
dyn: MKL_DYNAMIC=true
Note that other parameters are hand tuned
(see the paper).

Higher is better

Evaluation: FFT in Qbox

ÁQbox[*] : first-principles molecular

dynamics code.

ÁWe focus on the FFT computation part.

ÁWe extracted this FFT kernel and change

the parameters based on the gold benchmark.

28
[*] F. GygiΣ ά!ǊŎƘƛǘŜŎǘǳǊŜ ƻŦ Qbox: A scalable first-ǇǊƛƴŎƛǇƭŜǎ ƳƻƭŜŎǳƭŀǊ ŘȅƴŀƳƛŎǎ ŎƻŘŜΣέ L.a WƻǳǊƴŀƭ ƻŦ wŜǎŜŀǊŎƘ ŀƴŘ 5ŜǾŜƭƻǇƳŜƴǘΣ ǾƻƭΦ рнΣ ƴƻΦ мΦнΣ ǇǇΦ мотς144, Jan. 2008.

FFTW3

OpenMP parallelized code

OpenMP
parallelized code

OpenMP Runtime System

LAPACK/ScaLAPACK

BLAS
OpenMP parallelized code

MPI

// FFT backward
#pragma omp parallel for
for (int i = 0; i < num / nprocs ; i ++)

fftw_execute (plan_2d, ...);

void fftw_execute (...): // in FFTW3
[...];
#pragma omp parallel for num_threads (N)
for (int i = 0; i < [...]; i ++)

fftw_sequential (...);

Qbox

Experiments on KNL 7230 64 cores.
threads for the outer regions = 64
threads for the inner regions = N (changed)

Performance: FFT in Qbox

Á N=1 (flat): performance is almost the same.

Á N>1 (nested): BOLT further increased performance.

29

01234

1 10 100

BOLT (opt) Intel (nobind) Intel (true)

Intel (close) Intel (spread) Intel (dyn)

// FFT backward
#pragma omp parallel for
for (int i = 0; i < num / nprocs ; i ++)

fftw_execute (plan_2d, ...);

void fftw_execute (...): // in FFTW3
[...];
#pragma omp parallel for num_threads (N)
for (int i = 0; i < [...]; i ++)

fftw_sequential (...);

64 atoms / 32 MPI
processes

96 atoms / 32 MPI
processes

128 atoms / 32 MPI
processes

64 atoms / 48 MPI
processes

96 atoms / 48 MPI
processes

128 atoms / 48 MPI
processes

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

0
1
2
3
4

1 10 100

64 atoms / 16 MPI
processes

96 atoms / 16 MPI
processes

128 atoms / 16 MPI
processes

X axis: # of inner threads (N)
Y axis: relative performance (BOLT + N=1: 1.0)

Intel OpenMP configurations: nobind(=false),true,close,spread: proc_bind, dyn: OMP_DYNAMIC=true

Å = # of MPI nodes
Å (and fftw size) is proportional

to # of atoms.

Higher is better

Lightweight Threads for OpenMP+MPI

MPI + OpenMP from an MPI viewpoint

31

MPICH over
Argobots

ULT

ES

ULT

ES

MPI

Argobots runtime

Communication libraries

Charm++

Applications

Charm++

Cilkά²ƻǊƪŜǊέ

ArgobotsES

RWS ULT

Fused ULT 1

Fused ULT 2

Fused ULT N

Χ

CilkBots

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PaRSEC

OpenMP (BOLT)

OmpSs

Global Thread Team

Task-Pool

Margo: Mercury RPC

Origin

Target

RPC proc

RPC proc

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

...

ESn-1 ESn

Intel DAOS
Open MPI over

Argobots

ULT

ES

ULT

ES

Open MPI

Progress
Engine

XcalableMP

#pragma xmploop
ŦƻǊ όΧύ

Argobots

Ecosystem of Argobots

High Interoperability with MPI [*]

ÁMPI+BOLT can improve

performance via Argobots

ςULTs are flexibly scheduled

without kernel intervention.

ωBetter communication and

computation overlapping

ωLatency hiding of blocking

operations.

32

Argobots

ULT

ULT

MPI
Runtime

Pthreads Pthreads Pthreads

ULT

ULT

ULT

ULT

ULT

ULT

ULT

Network

Schedule another ULT while waiting with very low overheads.

[*] H. Lu et al. "MPI+ULT: Overlapping Communication and Computation with User-Level Threads", HPCC '15, 2015

BOLT/Argobots + MPI

ÁMPICH + BOLT/Argobots is

officially supported.

33

0.5

2

8

32

128

1 64 4096 262144

L
a
te

n
cy

 [
u

s]

Message Size (Bytes)

U=1

U=2

U=4

U=8

U=16

U=32

Increasing threads (U)can reduce latency.

Point-to-point latency with 36 Haswell cores and
Mellanox FDR (U = # of ULTs per ES), MPICH

Stable! Passes all the major multithreaded
tests; as good as Pthreads!
(We test it weekly)

Á Initial support for Open MPI +

BOLT/Argobots has been merged

to the master.

ς In collaborationwith SNL and LANL

Qthreads/OpenMPIteams.

It now covers about 80% of the MPICH
multithreaded tests. It is under active
development.

Conclusions

How to use BOLT?

High ABI Compatibility

ÁBOLT keeps compatibility with the LLVM OpenMP interface.

ςSeveral compilers (GCC, Intel Compilers, and Clang/LLVM)

can be used as a frontend.

ωi.e., BOLT does not require a special compiler.

ςNo need to recompile existing applications and libraries for BOLT!

35

Note: some existing proposals require special compilers.

Intel
Compiler

Clang

Intel
OpenMP

BOLT

Argobots

GNU
Compiler

GCC
OpenMP

POSIX Threads (Pthreads)

Support of the Latest Features

ÁBOLT supports OpenMP 5.0 with a few exceptions.

ςAs the original LLVM OpenMP supports.

Á.h[¢ ǎǳǇǇƻǊǘ ƛƴŎƭǳŘŜǎ Χ

ςBasic parallel regions (parallel for/section)

ςTasks: task, taskloop, task depend

ςTarget offloading: (e.g., offload computation to a GPU device)

ωBOLT itself does not affect the GPU performance

ςSynchronization: single/master/barrier/order, omp_lock

ςSIMD directives: supported by compilers

Á.h[¢ ŎǳǊǊŜƴǘƭȅ ŘƻŜǎ ƴƻǘ ǎǳǇǇƻǊǘ Χ

ςOMPT & OMPD (though they are OpenMP 5.0 features)

ςTask cancellation

ςmutexinoutset
36

How to Build BOLT?

1. Use Spack

2. Use the latest version (https://github.com/pmodels/bolt)

ς Please follow the instruction.

37

$ git clone https://github.com/pmodels/bolt.git $BOLT_DIR
$ cd $BOLT_DIR
to use the very latest version:
git checkout latest
$ git submodule update -- init
$ mkdir build && cd build
$ cmake ../ - DCMAKE_INSTALL_PREFIX=BOLT_INSTALL_DIR\

- DCMAKE_BUILD_TYPE=Release - DLIBOMP_USE_ARGOBOTS=on
$ make - j install

$ spack install bolt # only BOLT
$ spack install sollve # all the SOLLVEcomponents

https://github.com/pmodels/bolt

How to Use BOLT?

ÁNo recompilation needed. Just change the runtime library.

Á [Recommended] Set LD_LIRBARY_PATH

ςPlease check if BOLT is loaded by ldd:

Á [Fallback] Set LD_PRELOAD

38

ʙ ,$ʍ,)"2!29ʍ0!4(ˮƧʙ"/,4ƳÉÎÓÔÁÌÌƳÌÉÂƙʙǅ,$ʍ,)"2!29ʍ0!4(ǆƨ ƚƳÐÒÏÇ

ʙ ,$ʍ,)"2!29ʍ0!4(ˮƧʙ"/,4ƳÉÎÓÔÁÌÌƳÌÉÂƙʙǅ,$ʍ,)"2!29ʍ0!4(ǆƨ ldd ./prog
linux - vdso.so.1 => (0x00007fff3bbbe000)
libm.so.6 => /lib64/libm.so.6 (0x00007f6e9fc29000)
libiomp5.so => /home/user/bolt/install/lib/libiomp5.so
(0x00007f6e9f994000)

GCC
ʙ ,$ʍ02%,/!$ˮƧʙ"/,4ƳÉÎÓÔÁÌÌƳÌÉÂƳÌÉÂÇÏÍÐƚÓÏƙʙǅ,$ʍ02%,/!$ǆƨ ƚƳÐÒÏÇ
Intel C/C++ Compilers
ʙ ,$ʍ02%,/!$ˮƧʙ"/,4ƳÉÎÓÔÁÌÌƳÌÉÂƳÌÉÂÉÏÍÐʪƚÓÏƙʙǅ,$ʍ02%,/!$ǆƨ ƚƳÐÒÏÇ
Clang/LLVM
ʙ ,$ʍ02%,/!$ˮƧʙ"/,4ƳÉÎÓÔÁÌÌƳÌÉÂƳÌÉÂÏÍÐƚÓÏƙʙǅ,$ʍ02%,/!$ǆƨ ƚƳÐÒÏÇ

If you cannot find it, LD_LIBRARY_PATH
does not work. It often happens if you use
GCC as a frontend.

BOLT: Lightweight OpenMP Runtime

ÁBOLT: a lightweight OpenMP runtime system based on LLVM

OpenMP for efficient threading in OpenMP + X.

1. Extremely lightweight OpenMP threads (aka.) that

can efficiently handle nested parallelism.

2. High interoperability with MPI.

ς Please visit us!

39

https://www.bolt-omp.org/

https://github.com/pmodels/bolt

ƻǊ ƎƻƻƎƭŜ ά.h[¢ hǇŜƴatέ

https://www.bolt-omp.org/
https://github.com/pmodels/bolt

Thank You for Listening!

ÁBOLT-Related Publications:
× H. Lu et al. "MPI+ULT: Overlapping Communication and Computation with User-Level Threads", HPCC '15,

2015

× A. Castellóet al. A Review of Lightweight Thread Approaches for High Performance Computing,

CLUSTER '16, 2016

× S. Seoet al. "Argobots: A Lightweight Low-Level Threading

and Tasking Framework", TPDS, 2018

× S. Iwasaki et al., "Lessons Learned from Analyzing Dynamic

Promotion for User-Level Threading",

SC '18, 2018

× {Φ Lǿŀǎŀƪƛ Ŝǘ ŀƭΦΣ ά.h[¢Υ hǇǘƛƳƛȊƛƴƎ hǇŜƴat Parallel

Regions with User-[ŜǾŜƭ ¢ƘǊŜŀŘǎϦΣ t!/¢ ΨмфΣ 2019

(Best Paper Award)

× {Φ Lǿŀǎŀƪƛ Ŝǘ ŀƭΦΣ ά!ƴŀƭȅȊƛƴƎ ǘƘŜ tŜǊŦƻǊƳŀƴŎŜ

Trade-Off in Implementing User-Level Threads", TPDS, 2020

ÁThe BOLT work is part of the ECP SOLLVE project.

40

Acknowledgment

Thisresearchwassupportedby the ExascaleComputingProject(17-SC-20-SC),a joint projectof the U.S. Departmentof9ƴŜǊƎȅΩǎOfficeof ScienceandNational

NuclearSecurityAdministration, responsiblefor delivering a capableexascaleecosystem,including software, applications,and hardware technology,to

supporttheƴŀǘƛƻƴΩǎexascalecomputingimperative.

https://www.anl.gov/mcs/article/researchers-win-
best-paper-award-at-pact19

$ spack install bolt # only BOLT
$ spack install sollve # all the SOLLVE components

